Asthma Phenotypes & Endotypes

Nathanael Brady, D.O.

Pikes Peak Allergy & Asthma Colorado Springs, Colorado Assistant Professor, Adjunct Clinical Faculty Rocky Vista University, Parker, Colorado

Definitions

- Phenotype
 - Observable characteristics without regard to underlying pathology
 - Clinical
 - Physiological
 - Biochemical
 - Response to treatment
 - Asthma phenotype results from interaction between genes and environment
 - Can change over time
 - Often overlap, making specific classification difficult

Definitions

- Endotype
 - Specific biological pathway that explains observable phenotypic characteristics
 - Defines an etiology and/or consistent pathophysiological mechanism

Classifications of Phenotypes

• Early concepts

- Focus on duality: allergic (extrinsic) vs non-allergic (intrinsic)
 - Widely accepted, few physicians tried to determine subsets
- Single variable or trigger based
 - Exercise-induced
 - Obesity-related
 - Smoking-related
 - Allergens
 - Infection
 - Air pollution
 - Aspirin
 - Occupational
- Clinical symptom based
 - Early vs late onset
 - Exacerbation-prone
 - Asthma with fixed airway limitation
 - Cough-variant

Early Classifications

- Inflammatory Phenotypes
 - 19th century eosinophilic vs non-eosinophilic
 - Late 1990s & early 2000s increased research in cell types
 - 1999 Wenzel et al studied severe, corticosteroid-dependent asthma
 - Type 2-high phenotype with high levels of eosinophils
 - Type 2–low phenotype with low levels of eosinophils
 - 2006 Simpson determined 4 inflammatory subtypes:
 - Eosinophilic
 - Neutrophilic
 - Mixed granulocytic
 - Paucigranulocytic (absence of either eosinophilic or neutrophilic inflammatory pattern)

New Approaches

- Hierarchical Cluster Analysis
 - Clusters patients according to preselected variables
 - Age of onset
 - Atopy
 - Sex
 - Severity of obstruction
 - 2008 UK: 16 variables, several clusters ID
 - 2010 SARP sample: 32 core variables, 5 clusters ID
 - 2 European cohorts: 4 clusters ID
 - 2 similar phenotypes identified
 - Early onset-allergic asthma
 - Late onset, mostly non-atopic women with high BMI

Newer Approaches

- Severe Asthma Research Program (SARP) 2010
 - Study of severe asthma (mild and moderate as controls)
 - 9 US sites and 1 in UK
 - Phenotypic characterizations
 - Questionnaires
 - Atopy
 - PFT
 - Blood tests
 - FeNO

SARP Cluster Analysis

- ► T_H2-Mediated Asthma
 - Early-Onset Allergic T_H2 Asthma
 - Most studied phenotype, 50% of subjects
 - Most often begins childhood/adolescents
 - Hypersensitivity to environmental allergens
 - Strong correlation to other atopic disease
 - High level T_H2 cytokines, inc total and specific IgE
 - Strong genetic component
 - Other biomarkers: FeNO, sputum eosinophils & serum periostin
 - Treatment: corticosteroids, biologics (anti-IgE, anti-IL5, anti-IL13)

- ► T_H2-Mediated Asthma
 - Late-Onset Persistent Eosinophilic Asthma
 - Recurrent exacerbations, marked eosinophilia, less atopy
 - Inflammation drivers unknown but unlikely allergic triggers
 - Decreased lung function compared to allergic asthma despite corticosteroid use
 - More severe with frequent exacerbations and poor control
 - Targeted anti-IL5 therapy

► T_H2-Mediated Asthma

- Late-Onset Persistent Eosinophilic Asthma
 - Subtype: Aspirin–Exacerbated Disease
 - Most often considered an endotype
 - Asthma, chronic rhinosinusitis with polyposis, and NSAID intolerance
 - Intense eosinophilic inflammation of nasal & bronchial tissues
 - Increased cysteinyl leukotriene production
 - Benefit seen in some with use of cysteinyl leukotriene receptor anatagonist (montelukast) & 5-lipoxygenase inhibitors (zileuton)

► T_H2-Mediated Asthma

- Allergic Bronchopulmonary Mycoses
 - Endotype characterized by a fungal hypersensitivity reaction, typically Aspergillus fumigatus
 - Association with cystic fibrosis, ? predisposed due to epithelial dysfunction
 - Clinical findings: bronchiectasis, mucus production, increased mold-specific IgE & IgG, eosinophilia, & obstructive lung function
 - Treatment: mainly systemic steroids and antifungal therapies, possibility for anti-IgE therapy

- ► T_H2-Mediated Asthma
 - Exercise-Induced Bronchospasm
 - Mild phenotype, likely at least partially T_H2-mediated
 - Typically younger age onset, more commonly atopic athletes
 - Variable eosinophilic inflammation
 - Response to B-agonists and cysteinyl leukotriene receptor anatagonist (montelukast)

Non-T_H2-Mediated Asthma

Neutrophilic Asthma

- Airway neutrophilia can be associated with lower lung function, increased air trapping, & airway thickening
- Sputum neutrophilia reported with severe and suddenonset fatal asthma
- Corticosteroids less effective, inhibit apoptosis promoting accumulation in the airway
- Possible response to macrolide antibiotics
- Paucigranulocytic Asthma
 - Corticosteroids less effective
 - Likely respond best to intensive bronchodilator therapy
 - No specific biologic therapy on horizon

- Non-T_H2-Mediated Asthma
 - Extensive Remodeling Asthma
 - Accelerated decreased lung function and partial or irreversible obstruction
 - Profibrotic cytokines released from damaged epithelia result in fibroblast proliferation and activation

Biomarkers

- Preferences
 - Noninvasive
 - Cost effective
 - Clinically useful
- Current & Potential
 - Serum eosinophils
 - Easy to obtain, help stratify type-2 low or high phenotype
 - Neither sensitive or specific to asthma and no evidence of use in ICS adjustment to improve outcomes
 - Sputum eosinophils
 - Correlate with airway inflammation, decreased FEV1 and increased bronchial hyperresponsiveness, and response to treatment
 - Difficult to obtain
 - IgE
 - Easy to obtain, correlates with airway eosinophilic asthma and atopic asthma
 - Not specific for all asthma types
 - FeNO
 - Easy to obtain, correlates with airway eosinophilic asthma and atopic asthma
 - Not specific to lower airway inflammation
 - Periostin
 - Sensitive for eosinophilic and type 2-mediated inflammation in uncontrolled asthma
 - Not readily available and clinical utility as a measure of airway eosinophils unknown

Confounders to Phenotype

- Genetic and environmental interactions
 - Smoking
 - Increased symptoms, accelerated decrease in lung function, corticosteroid response impairment
 - Hormonal changes
 - Infection
 - Obesity
 - Possible phenotype: adult-onset, non-T_H2, minimal atopy, female, symptomatic
 - Treatment with weight loss, possibly hormonal therapies
 - Study showing improved airway responsiveness to methacholine challenge after bariatric surgery

Treatment: IgE-blocking strategies

FDA Approved

- Omalizumab
 - Biomarkers
 - Antigen specific IgE
 - Improved response with higher FeNO and serum eosinophils >300 cells/uL

Treatment: IgE-blocking Strategies

- No longer in development
 - Quilizumab
 - Anti–M1 prime mAb depleting IgE–expressing B cells to block IgE production
 - Blocked early and late responses 30%, reduced serum IgE 40%
 - No therapeutic benefit in clinical field study
 - Lumiliximab
 - Anti-CD23 mAb, cross-links B cell CD23 to decrease IgE production
 - Decreased serum IgE by 40%
 - Failed clinical field trials
 - Ligelizumab
 - Anti-IgE mAb, 50-greater fold affinity compared to omalizumab
 - Inhibited skin test response, reduced IgE levels > omalizumab
 - No better effect than omalizumab in clinical field study

Treatment: IL-5-blocking Strategies

FDA Approved

- Mepolizumab
 - Reduced exacerbations by 53% (1.74 vs 0.83) & FEV1 increase \approx 100ml in pivotal phase 3 trial
 - Possible greater benefit with eosinophil count >500
 - 80% reduction in exacerbations, FEV1 increase 132-222ml
 - Increased asthma QoL scores
 - Decreased ED visits and hospitalizations
 - Reduced corticosteroid dose >50%, with improved symptom score and reduced exacerbations

Treatment: IL-5-blocking Strategies

- FDA Approved
 - Reslizumab
 - Reduction in asthma exacerbation frequency (0.41 & 0.5) in 2 phase III studies
 - Improved FEV1, QoL scores and asthma control parameters
 - Short-term study (16 week) >200ml increased FEV1
 - Benralizumab
 - Greater benefit with higher eosinophil counts, reduction of exacerbations 45-51%
 - Improved FEV1 106–159ml
 - Improved symptom scores and QoL
 - Benefit seen at 4 weeks

Treatment: T_H2-Mediated Asthma

- In Clinical Trials
 - Tralokinumab
 - Anti–IL–13 mAb
 - Trials with variable results, decreased exacerbations in patients with high periostin or DPP-4 levels
 - Dupilumab
 - Anti-IL4Rα mAb, blocks both IL-4 and IL-13
 - Biweekly home administration with reduced exacerbations (0.27 vs 0.9) and pulmonary function regardless of blood eosinophil level, results better in >300 counts (0.2 vs 1.04)
 - Possible option for patients with lower eosinophil counts?
 - AMG-157
 - Anti–TSLP mAb
 - Thymic stromal lymphopoietin (TSLP) promotes T_H2 inflammation
 - Clinical study with reduced allergen-induced early and late asthmatic response, blood and serum eosinophils, and FeNO

Treatment: T_H2-Mediated Asthma

- No longer in development
 - Lebrikizumab
 - Anti–IL–13 mAb
 - Initial study showed improved FEV1, more so in patients with higher periostin levels
 - Phase 3 trials with mixed results, development stopped

What does this all mean for treating asthmatic patients?

Questions or Comments?

Resources

- Biologics and biomarkers for asthma, urticaria and nasal polyposis, J Allergy Clin Immunol. 2017; 139:1411-1422.
- Changing paradigms in the treatment of severe asthma: the role of biological therapies, J Allergy Clin Immunol Pract. 2017; 25:S1-S14.
- Elucidating asthma phenotypes and endotypes: progress towards personalized medicine, Ann Allergy, Asthma & Immunol. 2016; 116:394-401.
- Characterization of asthma phenotypes: implications for therapy, Ann Allergy, Asthma & Immunol. 2016; 117:121-125.
- Developing and emerging clinical asthma phenotypes, J Allergy Clin Immunol Pract. 2014; 6:671-681.