Is it CVID? Not Necessarily

HAIG TCHEUREKDJIAN, MD

Current Paradigm of Pathogenesis

Genetic defect(s) Molecular defect(s) Cellular defect(s) Clinical disease

Current Paradigm of Pathogenesis

Genetic defect(s) Molecular defect(s) Cellular defect(s) Clinical disease

Clinical Disease

PAGID 1999	AMERATUNGA, ET AL 2013	ICON 2015
Immunodeficiency	Recurrent, severe, or unusual infections	Infection
	Poor response to antibiotics	Autoimmunity
	Breakthrough infections despite prophylactic antibiotics	Lymphoproliferation
	Infections in spite of appropriate immunization	None of the above
	Bronchiectasis or chronic sinus disease	
	Inflammatory disorder or autoimmunity	

Laboratory Phenotype

PAGID 1999

Marked decrease in IgG and IgA (or IgM)

Absent isohemagglutinins and/or poor vaccine responses

AMERATUNGA, ET AL 2013

IgG < 500 mg/dL

Low IgA (<80 mg/dL) and/or IgM (<40 mg/dL)

B cells present but low # CD27 $^{\scriptscriptstyle +}$ and/or increased CD21 $^{\rm low}$ B cells

IgG3 deficiency (<20 mg/dL)

Poor vaccine response

Transient responses to vaccines

Absent isohemagglutinins

Serological support for autoimmunity

Sequence variations in predisposing genes

ICON 2015

IgG < 450 mg/dL (although near normal still consistent)

Low IgA or IgM

Poor vaccine responses

Current Paradigm of Pathogenesis

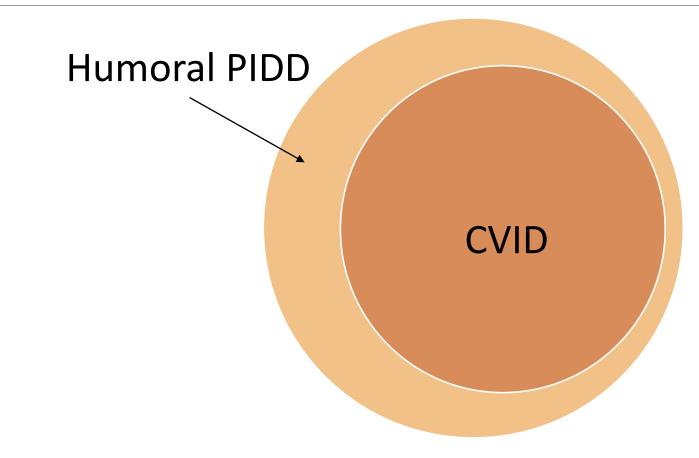
Genetic defect(s) Molecular defect(s) Cellular defect(s) Clinical disease

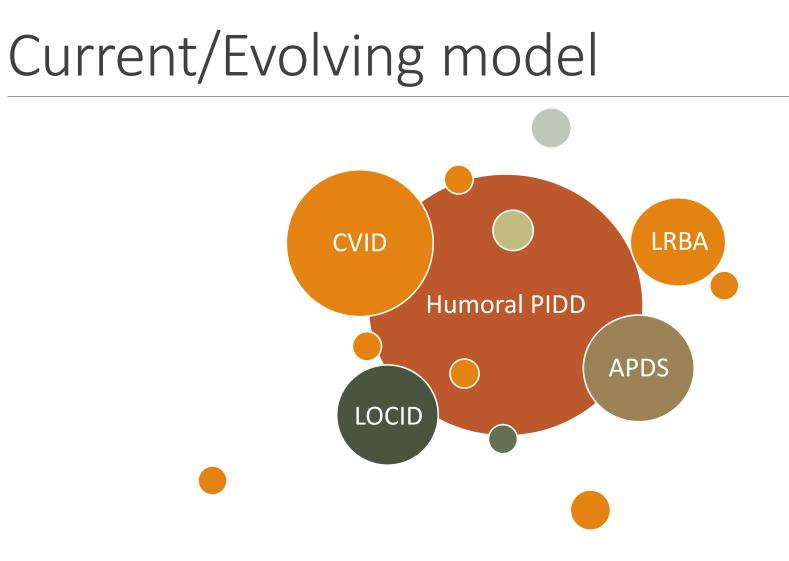
sine qua non of CVID

Maybe a B cell defect?

Not necessarily an Ig production defect

Function by Immunoglobulin Isotype


Functional Activity	IgM	lgG1	lgG2	lgG3	lgG4	lgA	lgE
Neutralization	+	++	++	++	++	++	
Opsonization		+++	Genotype dependent	++	+	+	
Sensitization for killing by NK cells		++		++			
Sensitization of mast cells		+		+			+++
Complement activation	+++	++	+	+++		+	


Maybe a T cell defect?

Maybe a dendritic cell defect?

Likely multicellular defect

Historical model

Current Paradigm of Pathogenesis

Genetic defect(s) Molecular defect(s) Cellular defect(s) Clinical disease

Genetic defects

Bogaert, et al. J Med Genetics. 2016;53:575-590.

Bogaert, et al. J Med Genetics. 2016;53:575-590.

Inducible T cell co-stimulator (ICOS)

ICOS expression

- T cells
- Dendritic cells
- •ICOS ligand expression
 - B cells
 - Dendritic cells
- •ICOS ICOS ligand interactions
 - Germinal center formation
 - Terminal B cell differentiation
 - Effector T cell responses
 - Immune tolerance

ICOS Deficiency Clinical Features

- •Autosomal recessive loss of function mutations
- Presents at any age
- Infections
 - Sinopulmonary
 - Gastrointestinal
 - Opportunistic
 - CMV viremia
 - Pneumocystis jirovecii pneumonia
- •Immune Dysregulation
 - Autoimmune disease
 - Lymphoid hyperplasia
 - Granulomatous disease
 - Hepatosplenomegaly
 - Inflammatory bowel disease

ICOS Deficiency Laboratory Findings

- •Low IgG (variable IgA and IgM)
- •Impaired responses to protein and polysaccharide vaccines
- •Absent to near absent memory B cells
- •Absent plasma cells in marrow

ICOS Deficiency Therapy

•B-cell, T-cell, and Dendritic cell defects must be weighed

Immunoglobulin replacement

- Prophylaxis against opportunistic infections
 - Trimethoprim/sulfamethoxazole
 - Acyclovir
- •Hematopoietic stem cell transplantation
 - Infections
 - Inflammatory bowel disease

Who to genotype?

- •Opportunistic infections
- •Difficult to control inflammatory disease, especially enteropathy
- •Absence or near absence of memory B cells
- •Absence of marrow plasma cells
- •Family history

Benefits of genotyping

•Opportunistic infection prophylaxis

•Consider HSCT in severe cases including enteropathy

•Family planning

TACI

•Transmembrane activator and calcium modulator and cyclophilin ligand interactor

•Expressed on B cells

•Ligands

- B-cell activating factor (BAFF) or B Lymphocyte Stimulator (BLyS)
 - Membrane bound and soluble
- A Proliferation Inducing Ligand (APRIL)
 - Soluble
- Produced by
 - Dendritic cells
 - Monocytes
 - Neutrophils
 - Bone marrow stromal cells

TACI Function

- •Class switch recombination
- •Differentiation of plasma cells
- •Survival of plasma cells
- •T-independent responses to polysaccharide antigens
- •Central B-cell tolerance and peripheral B-cell expansion

TACI Mutation Clinical Features

- •Biallelic mutations are disease causing
- •Monoallelic mutations are disease predisposing
- Loss of function mutations
- Clinical phenotype
 - Common variable immunodeficiency
 - Sinopulmonary infections, granulomatous disease, lymphoid hyperplasia
 - Autoimmune disease primarily in heterozygous patients
 - Selective IgA deficiency
 - IgG subclass deficiency

TACI Mutation Laboratory Findings (in CVID)

•Low IgG (variable IgA and IgM)

Impaired responses to polysaccharide vaccines

•Variable memory B cell numbers

TACI Mutation Therapy in CVID

- •Traditional CVID therapy
 - Immunoglobulin replacement
 - Antimicrobial prophylaxis when appropriate
 - Management of inflammatory and autoimmune diseases
 - Malignancy surveillance

Phosphoinositide 3-kinase (PI3K)

- •PIK3CD gene encodes the catalytic p110δ subunit of phosphoinositide 3-kinase (PI3K)
- •Intracellular molecule in leukocytes including B-cells and T-cells
- •Activated by binding of ligands to various cell surface receptors
 - Antigen receptors
 - Cytokine receptors
 - Surface integrins
- •Modulates signaling through multiple downstream pathways including mechanistic target of rapamycin (mTOR) modulating
 - Gene expression
 - Regulation of protein and organelle function
 - Cellular metabolism

Immunodeficiency secondary to PIK3CD mutation

 Activated PI3Kδ Syndrome (APDS) OR p110δ Activating mutation causing Senescent T cells, Lymphadenopathy, and Immunodeficiency (PASLI Disease)

•Autosomal dominant

•Gain of function mutations

APDS Infectious Complications

Recurrent respiratory tract infections	51/53 (98)	
Pneumonia	39/46 (85)*	
Bronchiectasis [‡]	32/53 (60)	
Chronic rhinosinusitis	24/53 (45)	
Recurrent otitis media	26/53 (49)	
(with permanent hearing loss)	4/53 (8)	
Severe or persistent herpesvirus infection	26/53 (49)	*
EBV	14/53 (26)	
CMV	8/53 (15)	
HSV and VZV	11/53 (21)	
Tonsillitis	15/53 (28)	
(with tonsillectomy)	7/53 (13)	
Ocular infections	10/53 (19)	

APDS Non-infectious Features

Lymphadenopathy§	34/53 (64)
Splenomegaly	31/53 (58)
Hepatomegaly	24/53 (45)
Autoimmune disease	22/53 (42)
Nodular mucosal lymphoid hyperplasia	17/53 (32)
Enteropathy	13/53 (25)
Developmental delay	10/53 (19)
Lymphoma	7/53 (13)

APDS Immunoglobulin levels

	Reduced, n/total (%)	Normal, n/total (%)	Increased, n/total (%)
IgG	21/49 (43)	26/49 (53)	2/49 (4)
IgA	25/50 (50)	24/50 (48)	1/50 (0.5)
IgM	0/50 (0)	12/50 (24)	38/50 (76)
Pneumococcal vaccine response*	25/28 (89)	3/28 (11)	

J Allergy Clin Immunol 2017;139:597-606

APDS T cell phenotype

•Decreased CD4/CD8 ratio

•Increased number of terminally differentiated memory T cells (poor proliferative capacity)

 Increased number of senescent CD8+ memory T cells (poor functional capacity)

APDS B cell phenotype

Reduced B-cell counts (CD19⁺)32/48 (67)Increased transitional B-cell counts24/32 (75)(CD19⁺IgM⁺⁺CD38⁺⁺)15/30 (50)Reduced nonswitched memory B cells15/30 (50)(CD19⁺IgD⁺CD27⁺)17/30 (57)Reduced class-switched memory B-cell counts17/30 (57)(CD19⁺IgD⁻CD27⁺)17/30 (57)

APDS Therapy

- Immunoglobulin replacement
- •Antibacterial, antiviral, and/or antifungal prophylaxis in selective patients
- •Frequent screening for lymphoma
- •Rituximab for non-neoplastic lymphoproliferation and other autoimmune disease
- •Rapamycin (sirolimus) for non-malignant lymphoproliferation and hepatosplenomegaly
- •Consider selective PI3Kδ inhibitors
- •Consider HSCT

Cellular effects of sirolimus therapy

Nat Immunol. 2014 January ; 15(1): 88–97

Who to genotype?

•Hyper IgM

•Severe non-malignant lymphadenopathy

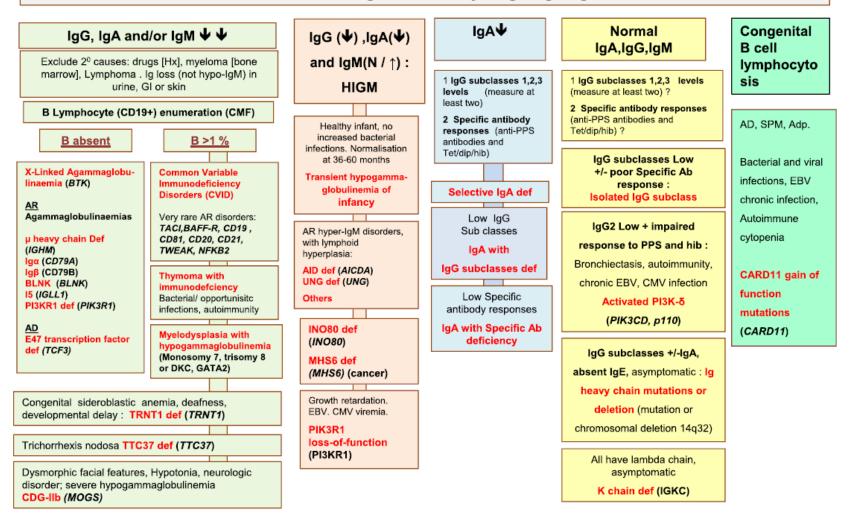
•Herpes family viremia

•Increased number of terminally differentiated (CCR7-) memory (RA-) T cells

•Increased number of senescent (CD57+) CD8+ T cells

•Family history

Benefits of genotyping


- Consider antiviral prophylaxis
- •Consider sirolimus for non-malignant lymphoproliferation
- Implement aggressive lymphoma screening
- •Consider HSCT in severe cases
- •Family planning

Current Paradigm of Pathogenesis

Genetic defect(s) Molecular defect(s) Cellular defect(s) Clinical disease

Recurrent bacterial infections eg : Otitis, pneumonia, sinusitis, diarrhea, sepsis

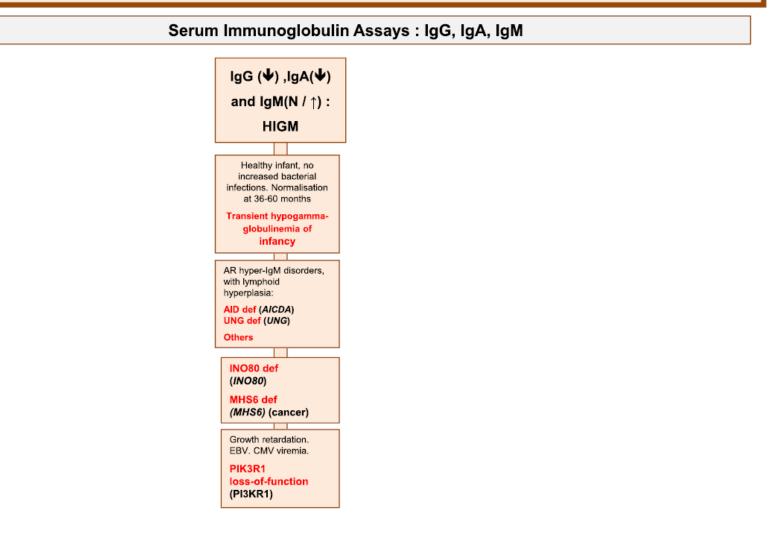
Serum Immunoglobulin Assays : IgG, IgA, IgM

Recurrent bacterial infections eg : Otitis, pneumonia, sinusitis, diarrhea, sepsis

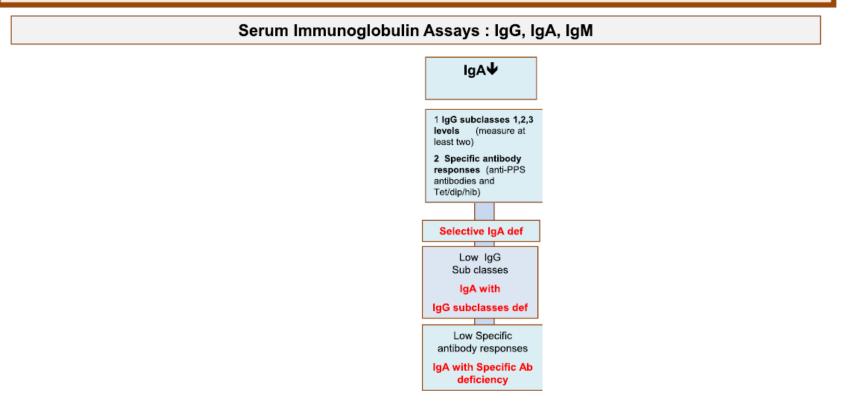
Serum Immunoglobulin Assays : IgG, IgA, IgM

Congenital B cell lymphocyto sis

AD, SPM, Adp.

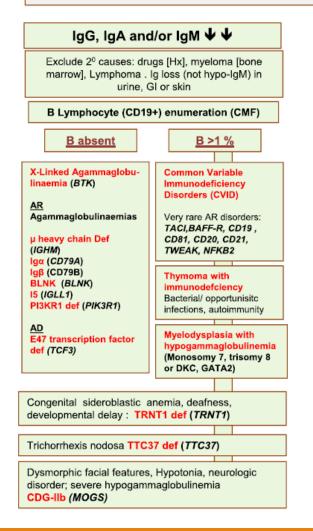

Bacterial and viral infections, EBV chronic infection,

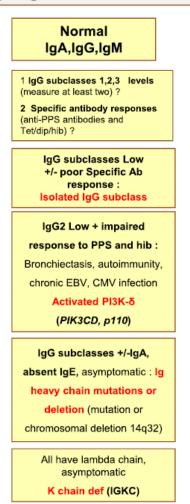
Autoimmune


cytopenia

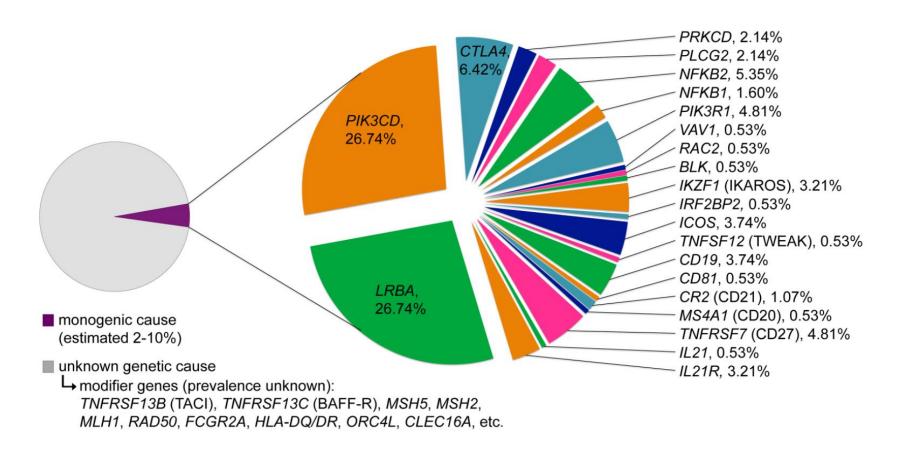
CARD11 gain of function mutations (CARD11)

Recurrent bacterial infections eg : Otitis, pneumonia, sinusitis, diarrhea, sepsis




Recurrent bacterial infections eg : Otitis, pneumonia, sinusitis, diarrhea, sepsis

Recurrent bacterial infections eg : Otitis, pneumonia, sinusitis, diarrhea, sepsis


Serum Immunoglobulin Assays : IgG, IgA, IgM

sine qua non of CVID

Genetic defects

Bogaert, et al. J Med Genetics. 2016;53:575-590.