Mass Casualty Incidents

Gerry Maloney, DO, FACOEP, FACEP

Associate Chief, Emergency Department, Cleveland VA Medical Center Associate Professor, Medicine & Emergency Medicine, CWRU LTC, MC, USAR

Disclosures

- None
- This presentation does not necessarily represent the views of the US Department of Defense or Department of Veterans Affairs

Objectives

- At the conclusion of this presentation, learners will be able to answer the following questions:
 - What is a mass casualty incident?
 - What is the epidemiology of mass casualty incidents in the US?
 - How is a mass casualty incident run, both in the field and hospital?
 - What types of injuries are commonly seen?
 - What can I do at the scene to help?

Mass Casualty (aka MasCal)

- Definition:
 - <u>Any incident in which the number of patients exceeds the capacity of the</u> <u>local healthcare system (EMS & hospitals) to care for them</u>

Types of Incidents

- Can be mundane
 - Pile-up with multiple patients
 - House fire with several patients
 - Drive-by shooting with several patients
- Or Not
 - Explosions
 - Train derailments
 - Mass shootings
 - Chemical incidents
 - Acts of war

MasCal as a Disease?

- The number of mascal incidents is on the rise
- Greatest proliferation is in mass shootings

Epidemiology of Mass Shootings

Epidemiology of Mass Shootings

Epidemiology of Mass Shootings

Differences in Mass Shootings vs Conventional Shootings

- Weapons typically are assault rifles
 - Large capacity high-velocity rounds
 - Handguns (lower capacity and smaller lower-velocity rounds)
- Larger cavitation and tissue destruction
- Shooters frequently more experienced using their weapons
 - Better accuracy and better "kill shots"
- Mass shooters frequently not concerned with escape
 - Keep killing until they die

Ballistics 101

- Depends on muzzle velocity (rifle vs handgun vs shotgun) and type of projectile (bullet size, hollow point vs jacket, shot)
- Temporary vs permanent cavity in tissue
- Yaw (tumble) of projectile in the body

Ballistics 101

Ballistics 101

Blast Injuries

Blast Injuries

- What are they
- What should I look for
- What don't I want to miss

Types of Blasts

OK for Real Now

- Thermonuclear
- Thermal
- Chemical
- HE

Thermonuclear Blasts

- Greatest potential destruction
- Least likely type of injury you will see
 - Hardest to obtain
 - Most likely that you will be vaporized as well
- Combine the features of many other types of blast injuries with radiation and intense heat
- Major addition is radiation exposure
- Otherwise similar to HE blasts

Thermobaric

- AKA fuel-air explosives
- Mix of gases or droplets in air
- Causes explosion with intense flame component

Examples of Thermobarics

- Dust/air mixtures in silos
- Slowly-escaping natural gases
- BLEVE (boiling liquid-expanding vapor explosions)
- Munitions
 - Usually designed to be BLEVE-type blasts

HE Explosives

- Have a high reaction rate
 - Aka the conversion is quick
 - Called a detonation
 - Generate a blast wave

Anatomy of an Explosion

- Consider the case of HE blasts
- Detonation creates gas at high temp & pressure
 - Example of C4-over 4 million PSI
- This causes blast wave
 - Rapid omnidirectional pressure front
- This rapid rise in pressure is called overpressure

Anatomy of an Explosion

• Overpressure

- Primary cause of injury/death
- Peak overpressure wave of 60-80 psi lethal
- Caused by transfer of energy to the body

Determinants of Injury

- Peak of overpressure wave
- Duration of overpressure
- Medium of explosion
- Distance from initial blast wave
- Focusing
 - Reflection off other surfaces
 - Worse if it occurs in enclosed space

Determinants of Injury

- Greatest damage occurs at transition points of tissue
 - IE tissue/bone junction
- Pressure-sensitive locations
 - Barotrauma-lungs, eardrums

Determinants of Injury

- Blast winds
 - Large release of gaseous products causes "winds"
 - These can cause a great deal of secondary injury
 - Even low intensity blasts can cause a great deal of winds

Injury Patterns

- Primary blast injury
 - Due to pressure wave
 - Seen with HE explosives
- Secondary injury
 - From projectiles
 - Body turned into a projectile
 - Heat

• Burns

- Manage as any other burns
- Burns rarely in isolation
- ALWAYS look for additional injuries

- Sharpnel
 - Beware penetrating trauma
 - Pinholes can herald big trouble
 - Have an exceptionally low threshold to consider vascular injury
 - Beware complex devices
 - Shrapnel that is radioactive
 - Covered with feces, blood, etc

- Amputations
 - Seen commonly with HE blasts
 - A great deal of force released at bone/ST junction
 - Tearing mechanism
 - Usually limits vasospasm
 - Can have massive blood loss
 - Need urgent hemorrhage control
 - TK
 - Guillotine amputation

- Barotrauma
 - Can be immediate or delayed
 - Barotrauma in one anatomic region usually means in others
 - Beware isolated "TM perf"
 - Frequently develop associated barotrauma

- Overpressure causes alveolar rupture
- Leads to pneumothorax, SQE, pneumomediastinum
- Most common pulmonary injury is contusion
- Can also develop systemic air embolism
- CXR usually diagnostic

• Eardrum

- May be associated with other barotrauma
- With lower pressures may see hemotympanum without rupture
- May not see eardrum injury in certain cases
 - Wearing ear protection
 - Body in water, head out of water during underwater explosion

- Most common type of blast injury barotrauma is to ears
 - 35% of OKC blast victims had TM involvement
- Severe injury may have permanent hearing loss

• GI

- May see pneumoperitoneum
- May not see pneumoperitoneum; may have perf or hemorrhage instead
- Colon site of most GI barotrauma
 - Most air filled part of GI tract
- Look for signs of acute abdomen
- Presentation frequently subtle

Neurotrauma

- Can be from penetrating injuries
- Can also be from overpressure
 - Can be DAI
 - Also concussion
- Repetitive trauma from blast injuries current research topic
 - Using markers like NFG proteins and s100b

Secondary Injuries

- Can be from debris
- Can be planned
 - Suicide vests with ball bearings
 - EFP's
 - Cluster munitions

Other Principles

- Scene safety
 - If terrorist incident suspected remember that second device may be around
 - Unsafe structures
 - WTC
 - Radiation if nuclear blast

Management Principles

- ICS (Incident Command System)
 - Mandated by FEMA for hospitals/municipalities/EMS
 - Provides organized structure from scene of incident into hospital
 - Open communication between field and facility
 - Provides for triage, initial stabilization, and transport from scene
 - Hospital-surge capacity, additional resources

The ICS

Field Management

- Most EMS agencies use START (Simple Triage and Rapid Transport)
 - Assigns patients to one of 4 color codes
 - Black-dead
 - Red-immediate
 - Yellow-urgent
 - Green-walking wounded
- Patients without a pulse are usually not resuscitated
- Patients who are critically injured take priority
- Coordinated response with field & hospital IC's to distribute patients appropriately

Hospital Management

- IC staff (usually senior leaders) staff command center
- Call in appropriate backup staff; open OR's; extra radiology & lab availability; blood supply; open up outpatient areas as ED overflow
- Plan for inpatient surge capacity
 - Open up unused floor beds
 - Facilitate rapid discharge and bed cleaning
- Support staff on hand for debriefing of providers (EMS & hospital) after the incident is over

Summary

- Mass casualty incidents becoming more common
- Most likely MCI's are shooting or explosives
- Most shootings likely to be with military type weapons
- Blast injuries have unique injury patterns rarely encountered in civilian life
- Hospitals need surge capacity plan to handle a sudden influx of severe patients

Questions?

gerald.maloney@va.gov