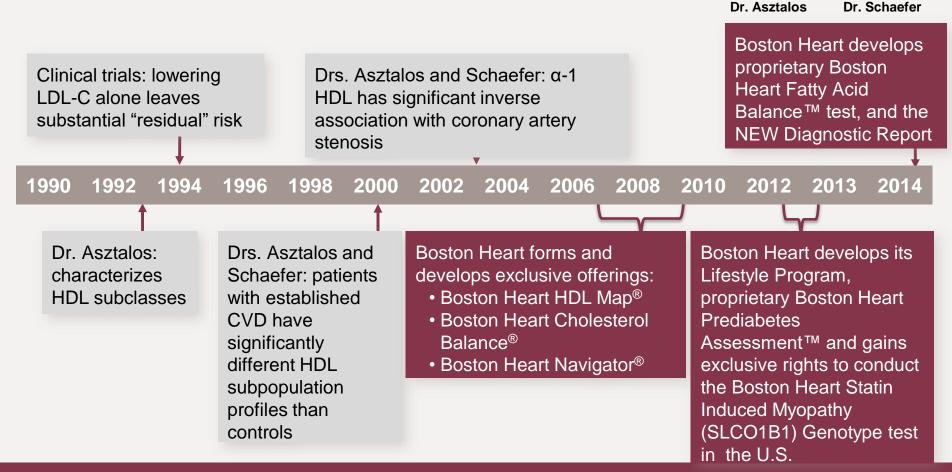
bostčnheart diagnostics®


Boston Heart Diagnostics

Luke G. Nelligan D.O. January 22, 2016

A History of Scientific Research and Discoveries

CLINICAL UPDATE

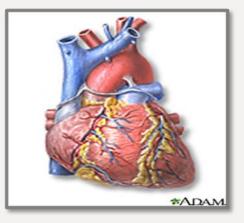
Addressing Challenges in CVD Risk Reduction BOSTON HEART DIAGNOSTICS

Testing Beyond the Primary Drivers of Atherosclerosis

Diagnostic Testing Leads to CVD Risk Assessment and Patient Management

PATIENT CASE STUDIES

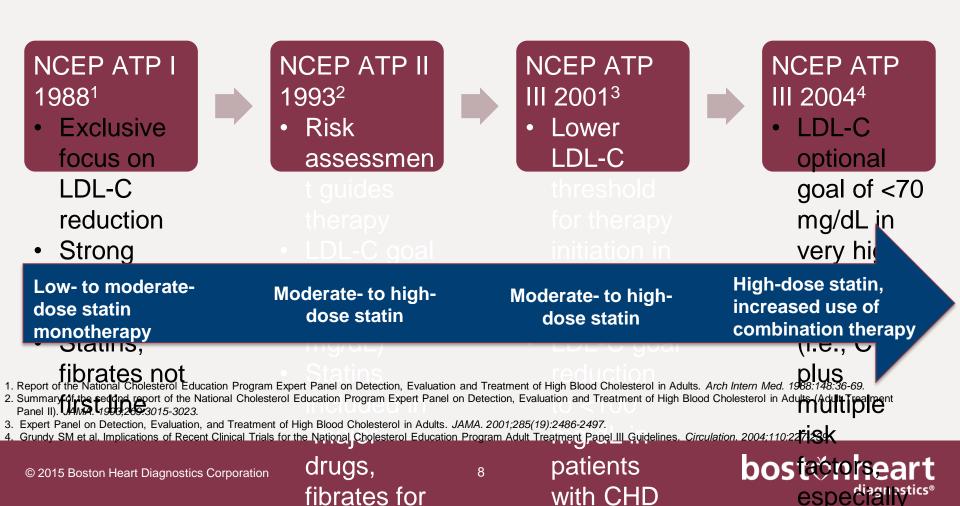
The Challenge



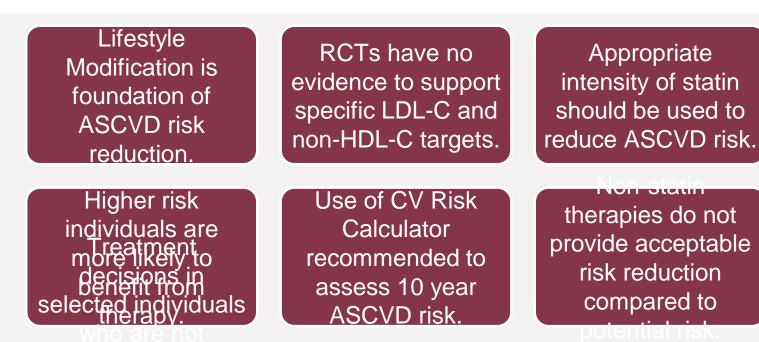
Improvement in CVD Risk Reduction Is Needed Despite Advances

- Cardiovascular disease (CVD) is the leading cause of death in U.S., despite guideline-driven care¹
- Recent decline in CVD death rate, but CVD still accounts for 33% of all deaths²
- Total CVD healthcare costs in 2011 were \$320.1 billion, projected to be \$918 billion by 2030²
- 50% of people who have had a heart attack have normal LDL cholesterol³

 Mozaffarian D, Benjamin EJ, Go AS et al. *Circulation.* 2015;131:e129.
 Mozaffarian D, Benjamin EJ, Go AS et al. *Circulation.* 2015;131:e4-5,e282.
 Sachdeva et al. *Am Heart J.* 2009;157:111-117.e2 <u>http://www.nlm.nih.gov/medlineplus/images/heart.jpg</u>



Addressing Challenges in CVD Risk Reduction

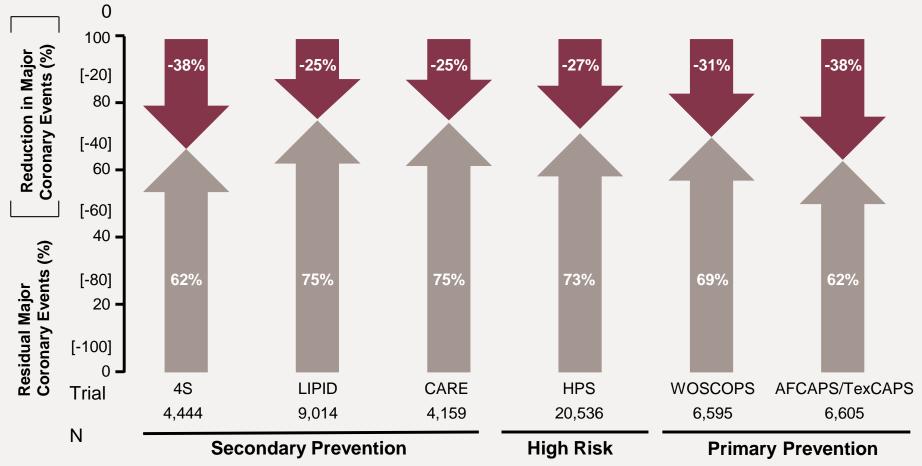

Guidelines Evolving

Slowly With A Narrow Focus

ACC/AHA Cholesterol Guidelines 2013

Overview

included in the four major statin benefit groups may be informed by other factors as

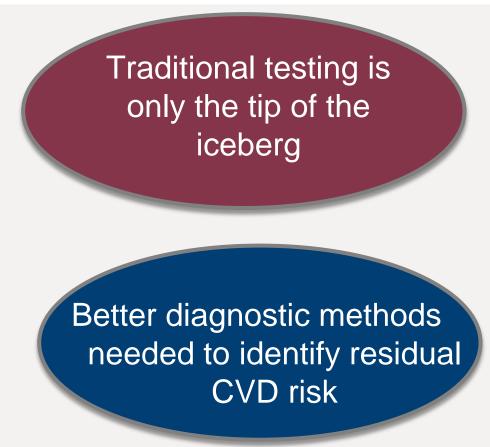

recommended by

bost onheart

© 2015 Boston Heart Diagnostics Corporation Assessment

9

Majority of Residual Risk for Cardiovascular Events Remains Despite LDL-C Lowering Therapy



Adapted from Libby P. The forgotten majority: unfinished business in cardiovascular risk reduction. J Am Coll Cardiol. 2005;46(7):1225-1228.

Using Traditional Cholesterol Testing to Identify and Treat CVD Risk is Not Enough

- Clinical trials have identified additional tests—not found on a routine lipid panel that identify CVD risk¹⁻³
- Advanced CVD risk markers are needed to identify underlying disorders that contribute to the 70-75% residual risk

Asztalos et al. Arterioscler Thromb Vasc Biol. 2004;24(11):2181-2187.
 Asztalos et al. Arterioscler Thromb Vasc Biol. 2005;25(10):2185-2191.
 Lamon-Fava et al. Arterioscler Thromb Vasc Biol. 2008;28(3):575-579

CVD Risk and Prediction of Events Over Time

Over 10 years CVD Risk • Increased

age

Hypertensi

on

Diabetes

• Smoking © 2015 Boston Heart Diagnostics Corporation Over Six months CVD Risk • hsCRP >

> 3.0 mg/LLpPLA₂ > 235 ng/mL

pmol/L

Recent Myocardial Damage • Elevated

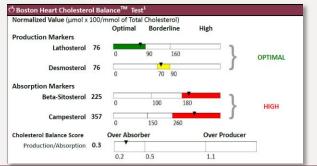
Troponin Tor Troponin

Elevated

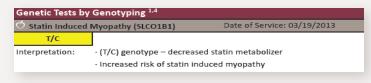
Reducing Individual Risk, One Heart at a Time

Exclusive tests and Lifestyle Program only available at Boston Heart

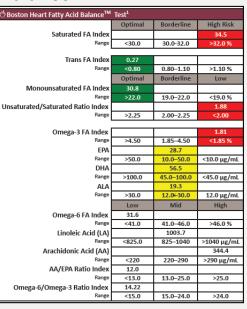
Boston Heart HDL Map®

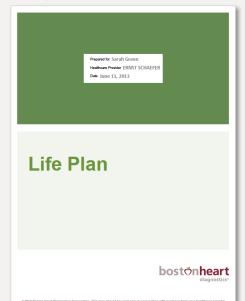

ApoA-I (mg/dL) levels in HDL particles	Optimal	Borderline	High Risk	HDL Particles	Optimal Male HDL Map	Patient's HDL Map
α-1			9.1	100		1223
Range	>20	14-20	<14 mg/dL	Sel.	•	•
α-2		45.3		189		-
Range	>55	45-55	<45 mg/dL	5		
α-3			31.7	58.	-	-
Range	<25	25-30	>30 mg/dL	-		
α-4		16.2				-
Range	<15	15-18	>18 mg/dL		•	
Preß-1		14.6			•	•
Range	<10	10-15	>15 mg/dL	-		

Boston Heart Prediabetes Assessment™


Ç	Bosto	n Hear	t Predia	betes Assessi	ment™	
Г	Low	Bord	erline	High Risk		Interpretation: H normal risk of dev
	0%	10%	20%		100%	years. Recommen

Interpretation: HIGH (56.7%) or (8.0) times normal risk of developing diabetes within 10 years. Recommend diet and exercise program, and consider metformin.


Boston Heart Cholesterol Balance®


Boston Heart Statin Induced Myopathy (SLCO1B1) Genotype

Boston Heart Fatty Acid Balance™

Boston Heart Lifestyle Program

bost onheart

Boston Heart Comprehensive Menu

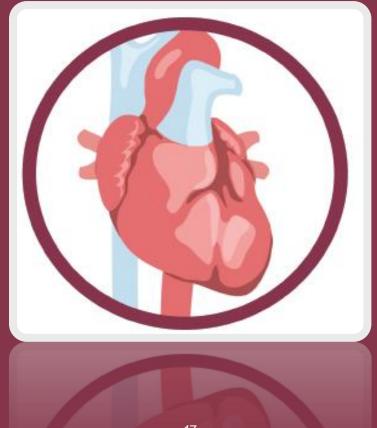
Boston Heart offers comprehensive CVD risk testing, including but not limited to:

Lipids	Inflammation	Genetics	Metabolics
 Boston Heart HDL Map Boston Heart Cholesterol Balance ApoA-1 ApoB Direct LDL-C HDL-C sdLDL-C Lp(a) Total Cholesterol Triglycerides VLDL-C 	 MPO hs-CRP Fibrinogen LpPLA₂ 	 Boston Heart Statin Induced Myopathy (SLCO1B1) Genotype Test Clopidogrel CYP2C19 ApoE Prothrombin (Factor II) Factor V Leiden MTHFR 	 Boston Heart Prediabetes Assessment Boston Heart Fatty Acid Balance Adiponectin Glucose GSP HbA1C Insulin Insulin Resistance
Sex Hormones, Thyroid, Li	iver, Kidney, Muscle		

Integrating Next Generation CVD Diagnostic Solutions into Your Practice

Offering a Differentiated Cardiovascular Condition Management Approach

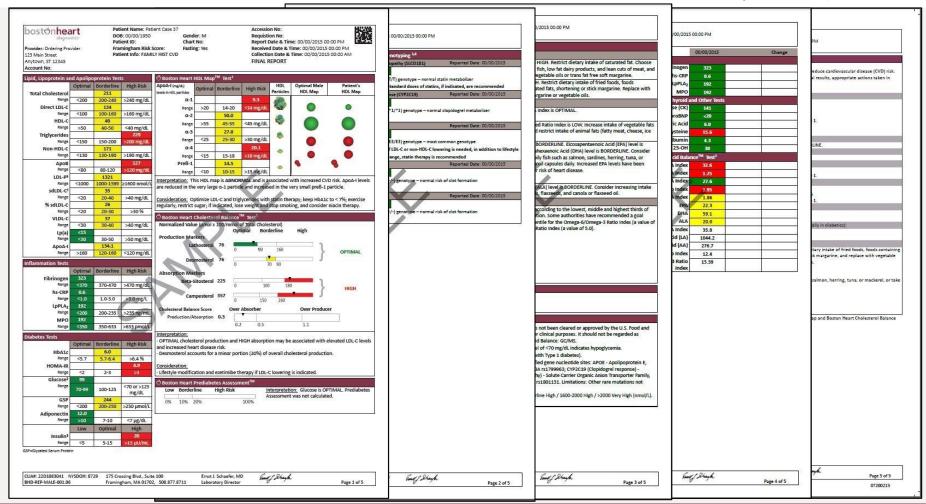
Boston Heart's integrated programs leverage diagnostic results with high clinical utility to address lifestyle factors that impact risk and patient adherence


Communication Plans Integrated diagnostics drive optimized therapeutic **Best-In-Class Diagnostics** regimens and easy-tounderstand, personalized A comprehensive yet focused therapy and nutrition plans panel of blood-based diagnostics Identify for patients that raise health Individualize to identify and stratify at-risk literacy and drive action patients Behavior Modification Online portal with education and coaching from registered dietitians, Engage food journaling and incentive and rewards systems to drive compliance and adherence to treatment plans resulting in improved health outcomes

Comprehensive Treatment &

Four Parts of Heart Disease Testing at Boston Heart

What is your patient's risk for heart disease?



© 2015 Boston Heart Diagnostics Corporation

Boston Heart Laboratory Report

Heart, John (PID: 99999)

Diagnostic Report for the Patient

©2014 Boston Heart Diagnostics Corporation. All rights reserved. The Boston Heart logo is a registered trademark of Boston Heart Diagnostics Corporation. Illustrations ©2014 Kryski Biomedia

John Heart's Clinical Information

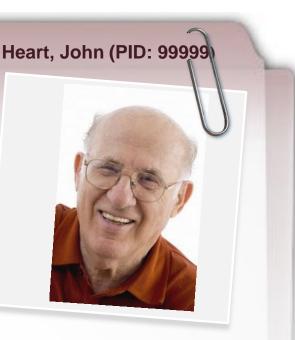
65 year old white male, 5'10", 179 lbs **Medical hx:**

 Headaches, gastro-esophageal reflux disease, smoker, low back muscle spasms w/pain

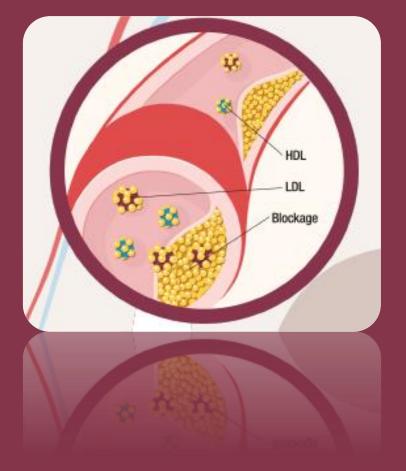
Medications:

• Antacid, omega 3/fish oil

Social hx:

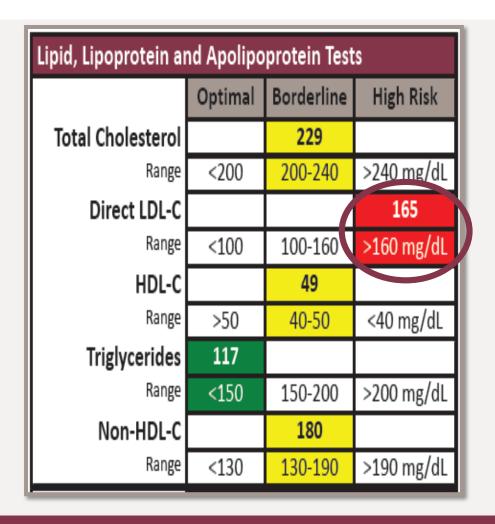

 Smokes < 1pack per day (E-cigs), rare liquor use, works as a distance truck driver

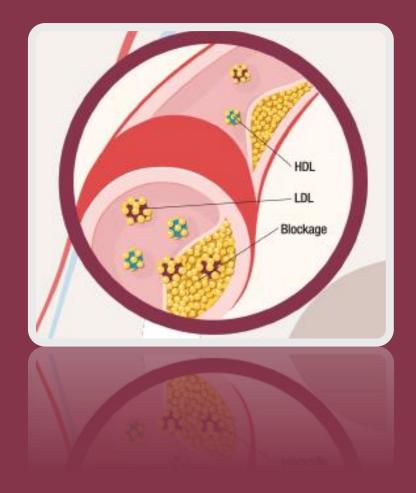
Family hx: None available


bost

<hr/>
<hr/>
heart

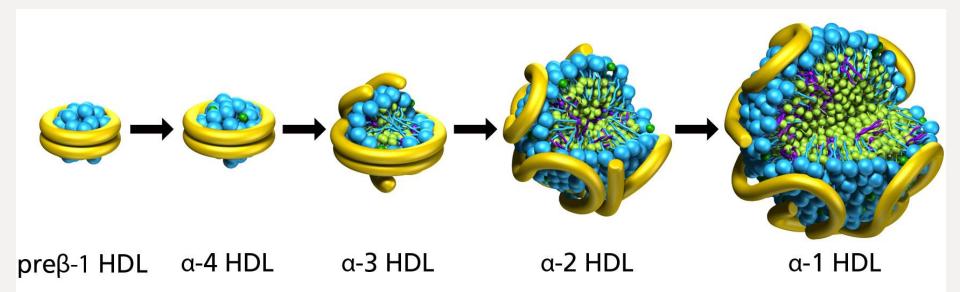
diagnostics®


Part 1: Lipids *Are your patients at risk of forming blockages?*



The Routine Lipid Panel

- When is treatment absolutely necessary?
- Does John need treatment with only 1 high and 3 borderline risk markers without a history of heart disease?


Boston Heart HDL Map®

Boston Heart HDL Map Definition

 Only test available that quantifies the amount of apoA-1 protein in each of the 5 HDL subclasses.

Boston Heart HDL Map

Definition

 Provides information to accurately identify patients at increased CVD risk.

ApoA-I (mg/dL) evels in HDL particles	Optimal	Borderline	High Risk	HDL Particles	Optimal Male HDL Map	Patient's HDL Map
α-1			9.1	100		
Range	>20	14-20	<14 mg/dL	2		•
α-2		45.3		150		-
Range	>55	45-55	<45 mg/dL	-		
α-3			31.7		-	-
Range	<25	25-30	>30 mg/dL	-		
α-4		16.2				-
Range	<15	15-18	>18 mg/dL	-	•	
Preß-1		14.6			•	•
Range	<10	10-15	>15 mg/dL	-		

Boston Heart HDL Map

Clinical Significance

HDL subpopulations are better predictors of CVD risk than HDL-C¹

Reference	Measure	Change	Endpoint	Associated Decrease in CVD/CHD Risk
Brown ¹	HDL-C	1% □increase	CVD	1%
	LDL-C	1% □decrease	CVD	1%
Asztalos ²	α-1 HDL particle	1 mg/dL increase	CHD	26%
	HDL-C	1 mg/dL increase	CHD	2%

Low α -1 level is a significant predictor of recurrent CVD events².

1. Brown et al. Curr Opin Lipidol. 2006;17:631-636.

2. Asztalos et al. Arterioscler Thromb Vasc Biol. 2004;24(11):2181-2187.

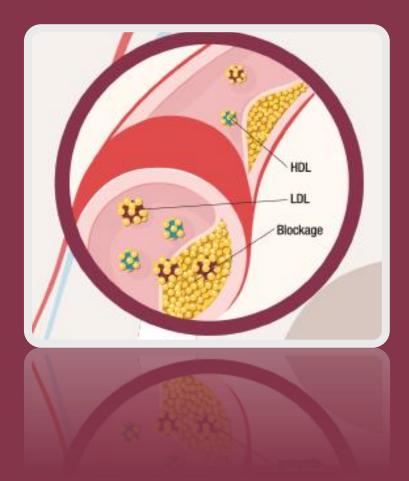
Impact of Treatments on Formation of HDL Subpopulations and Metabolism¹⁻⁵

HDL Parameter	Niacin	Statins	Fibrates
HDL-C	↑ 20%-40%	↑ 2%-10%	↑ 4%-10%
apoA-I concentration	1	_	_
α-1 particles	↑ up to 115%	↑12%-36%	Slight ↓
Preβ-1 particles	↓ up to 30%	↓ up to 40%	_
Metabolism	↑ ApoA-I production	↓ CETP activity	↑ gene expression of apoA-I, apo-II & LPL
	↑ ABCA1 expression in liver	No Δ apoA-I kinetics	↑apoA-I FCR

1.Lamon-Fava S et al. Arterioscler Thromb Vasc Biol.2008: 28;1672-1678.

2. Asztalos BF et al. Arterioscler Thromb Vasc Biol.2003:23;847-852.

- 3. Lamon-Fava S et al. J Lipid Res 2007;48:1746-53.
- 4. Asztalos B et al. Atheroscler 2002;164:361-9.


5. Asztalos BF et al Am J Cardiol 2007; 99: 681-685.

6. Watts G et al. Diabetes Care 2003;52:803-11.

7. Asztalos B et al. *Metabolism* 2008;57:77-83

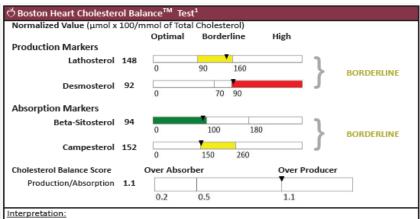
Boston Heart Cholesterol Balance[®] Test

Plasma Cholesterol Levels

Reflects Production Absorption & Clearance¹

Cholesterol is the Most Abundant Sterol in Plasma

LDL CHOLESTEROL Body cells and **Dietary intake** liver produce contributes 25% of PRODUCTION ABSORPTION 75% of Markers: Markers: cholesterol in Lathosterol Reta-sitosterol cholesterol in Desmosterol Campesterol blood Cholestanol blood


1. Schaefer EJ. ed. High Density Lipoproteins, Dyslipidemia, and Coronary Heart Disease. New York, NY: Springer. 2010:3.

Boston Heart Cholesterol Balance

Clinical Significance

- Plasma lathosterol & desmosterol levels
 are markers of cholesterol production
- High lathosterol indicates cholesterol overproduction
 - Associated with higher LDL-C and increased CVD risk
- Elevated levels of plasma desmosterol associated with increased cholesterol production or decreased conversion of desmosterol to cholesterol.
- High campesterol and beta-sitosterol indicate cholesterol overabsorption
 - Associated with higher LDL-C and increased CVD risk

• BORDERLINE cholesterol production and BORDERLINE absorption may be associated with elevated LDL-C levels and increased heart disease risk.

Desmosterol accounts for a minor portion (20%) of overall cholesterol production.

Consideration:

Lifestyle modification and statin therapy if LDL-C lowering is indicated.

Ratio of normalized production markers to normalized absorption markers

Van Himbergen TM et al. Arterioscler Thromb Vasc Biol 2010;30:113-120.Miettinen TA et al. Br Med J 1998; 316:1127-30.Assmann G et al . Nutrition, Metabolism & Cardiovascular Disease 2006;16:13-21.Matthan NB et al . J Lipid Res 2009;50:1927-1935.Schaefer EJ (Ed.). 2010. High Density Lipoproteins, Dyslipidemia, and Coronary Heartrt Disease. New York:Springer, (p. 1-3)

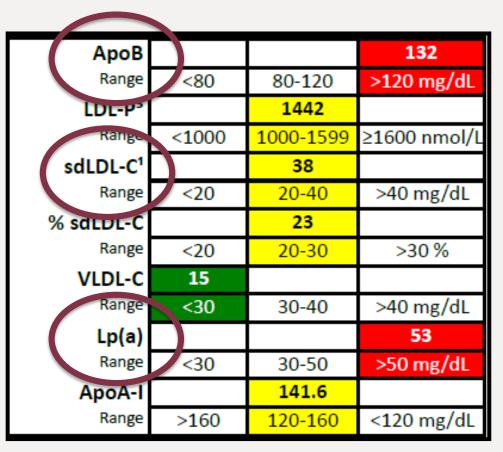
Boston Heart Cholesterol Balance

Maximal Effectiveness of Statin Therapy¹

Beta-sitosterol & Campesterol Least effective in patients with elevated markers of cholesterol

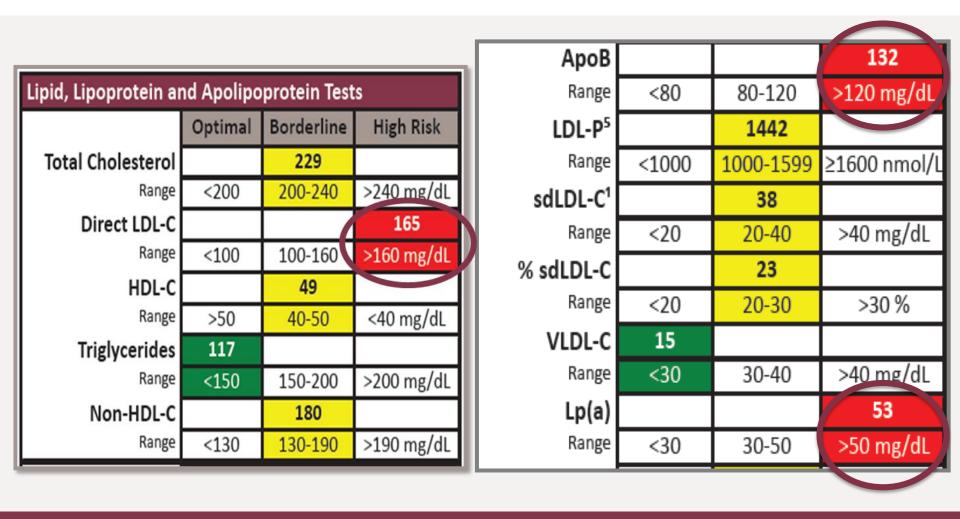
unovi pululi

Lathosterol & Demosterol Most effective in patients with elevated markers of cholesterol


1. Schaefer EJ, ed. High Density Lipoproteins, Dyslipidemia, and Coronary Heart Disease. New York, NY: Springer; 2010.

© 2015 Boston Heart Diagnostics Corporation

Beyond the Routine Lipid Panel... *Tests Related to LDL-C*


- Use Boston Heart tests with the routine lipid panel to assess risk of developing CVD
- Provides more information about John's level of risk to develop cardiovascular disease

John Heart's Results

Using All LDL Related Lipid Tests

Boston Heart Cholesterol Balance *Helps Identify Source of High LDL-C*

🔆 Boston Heart Cholesterol Bal	ance [™] Test ¹		
Normalized Value (µmol x 100/m	nmol of Total Cholesterol)		
Production Markers Lathosterol 148 Desmosterol 92	Optimal Borderline Hig 0 90 160	gh	 Production Markers Measure of cholesterol production by the liver Lathosterol & Desmosterol
	0 70 90		
Absorption Markers			
Beta-Sitosterol 94	0 100 180	BORDERLINE	 Absorption Markers Measure of cholesterol
Campesterol 152	0 150 260		 absorbed from food Beta-sitosterol & Campesterol
Cholesterol Balance Score	Over Absorber O	Over Producer	
Production/Absorption 1.1			
	0.2 0.5	1.1	

Beyond the Routine Lipid Panel... Tests Related to HDL-C

Lipid, Lipoprotein and Apolipoprotein Tests					
	Optimal	Borderline	High Risk		
Total Cholesterol		229			
Range	<200	200-240	>240 mg/dL		
Direct LDL-C			165		
Range	<100	100-160	>160 mg/dL		
HDL-C		49			
Range	>50	40-50	<40 mg/dL		
Triglycerides	117				
Range	<150	150-200	>200 mg/dL		
Non-HDL-C		180			
Range	<130	130-190	>190 mg/dL		

АроВ			132
Range	<80	80-120	>120 mg/dL
LDL-P⁵		1442	
Range	<1000	1000-1599	≥1600 nmol/L
sdLDL-C ¹		38	
Range	<20	20-40	>40 mg/dL
% sdLDL-C		23	
Range	<20	20-30	>30 %
VLDL-C	15		
Range	<30	30-40	>40 mg/dL
Lp(a)			53
Range	<30	30-50	>50 mg/dL
ApoA-I		141.6	
Range	>160	120-160	<120 mg/dL

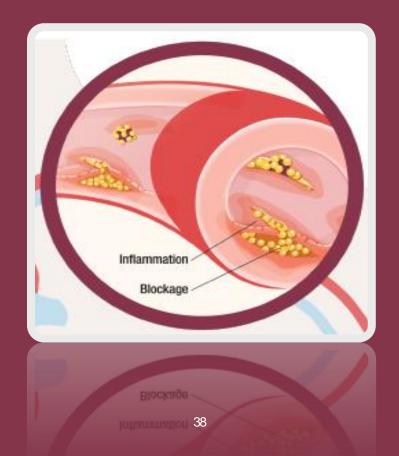
Boston Heart HDL Map

ApoA-I (mg/dL) evels in HDL particles	Optimal	Borderline	High Risk	HDL Particles	Optimal Male HDL Map	Patient's HDL Map
α-1		15.9		<u> </u>		
Range	>20	14-20	<14 mg/dL	5		
α-2	58.9			12		
Range	>55	45-55	<45 mg/dL	S		
α-3		26.0		۹		
Range	<25	25-30	>30 mg/dL	Ŷ		
α-4			24.7	۹		
Range	<15	15-18	>18 mg/dL	-		
Preß-1	7.6			٩		•
Range	<10	10-15	>15 mg/dL	•		
<u>nterpretation:</u> Tl /ery large α-1 par		ap is in the B	ORDERLINE	CVD risk ca	tegory based on <i>i</i>	ApoA-I levels in tl

sugar; if indicated, lose weight and stop smoking.

Using All HDL Related Lipid Tests

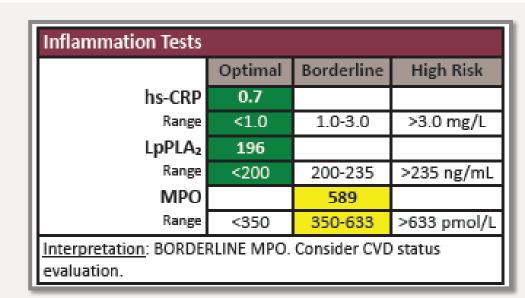
Lipid, Lipoprotein and Apolipoprotein Tests								
	Optimal Borderline High Risk							
HDL-C		49						
Range	>50	40-50	<40 mg/dL					
ApoA-I		141.6						
Range	>160	120-160	<120 mg/dL					


Ở Boston Heart HDL Map [™] Test ¹								
ApoA-I (mg/dL)	Optimal	Borderline	High Risk	HDL	Optimal Male	Patient's		
levels in HDL particles	optimar	bordenine	Thg T tok	Particles	HDL Map	HDL Map		
α-1		15.9		<i>8</i>				
Range	>20	14-20	<14 mg/dL	5				
α-2	58.9			1				
Range	>55	45-55	<45 mg/dL	S				
α-3		26.0		٨		-		
Range	<25	25-30	>30 mg/dL	Ŷ				
α-4			24.7	۹				
Range	<15	15-18	>18 mg/dL	-				
Preß-1	7.6			۹	-	•		
Range	<10	10-15	>15 mg/dL					

<u>Interpretation</u>: This HDL map is in the **BORDERLINE** CVD risk category based on ApoA-I levels in the very large α -1 particle.

<u>Consideration</u>: Optimize LDL-C and triglycerides; keep HbA1c to < 7%; exercise regularly; restrict sugar; if indicated, lose weight and stop smoking.

Part II: Inflammation *Do your patients have inflammation that can damage their arteries?*

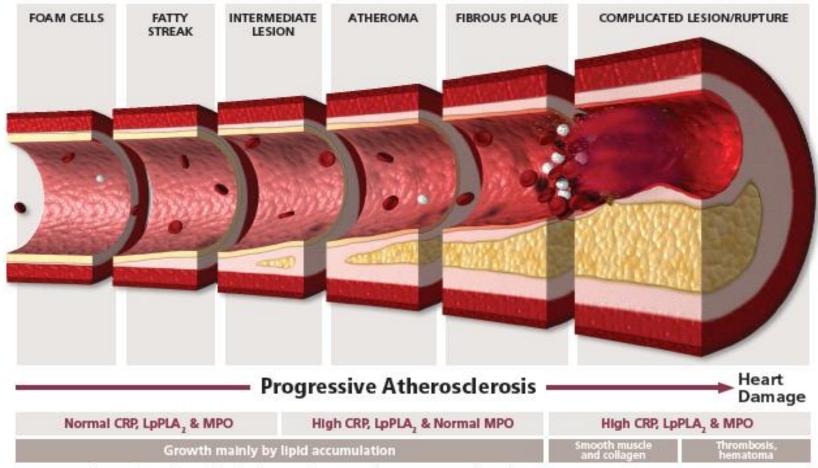


© 2015 Boston Heart Diagnostics Corporation

Inflammation Testing

Near Term Risk of Having a Cardiovascular Event

- hs-CRP
 - Marker of inflammation
- LpPLA₂
 - Marker of blockage forming, cracking or shifting
- MPO
 - Marker of blockage forming or breaking

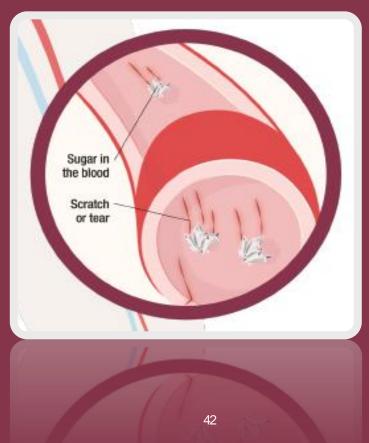

Fibrinogen – a marker of early inflammation was NOT ordered.

High values of three biomarkers are an indicator for near term risk of CVD

Coronary Atherosclerosis Timeline

MPO value >633 pmol/L increases 30 and 180 day MACE* event risk approximately threefold in patients presenting with chest pain²

*MACE = major adverse cardiovascular event (death, MI, bypass, PTCA) in patients who are CK negative with normal troponin.


Inflammation Tests

Optimal Borderline High Risk									
hs-CRP	0.7								
Range	<1.0	1.0-3.0	>3.0 mg/L						
LpPLA₂	196								
Range	<200	200-235	>235 ng/mL						
MPO		589							
Range <350 350-633 >633 pmol/L									
Interpretation: BORDE	RLINE MPO.	Consider CVD) status						
evaluation.									

Fibrinogen – a marker of early inflammation was NOT ordered.

Part III: Metabolics *Is diabetes increasing your patients' risk of heart disease?*

Metabolic Tests

Diabetes Tests			
	Optimal	Borderline	High Risk
HbA1c		5.8	
Range	<5.7	5.7-6.4	>6.4 %
HOMA-IR			70.4
Range	<2	2-3	>3
Glucose ²		122	
Range	70-99	100-125	<70 or >125
		100 120	mg/dL
GSP		231	
Range	<200	200-250	>250 µmol/L
Adiponectin			6.1
Range	>10	7-10	<7 μg/dL
	Low	Optimal	High
Insulin ³			232
Range	<5	5-15	>15 µU/mL

Metabolic Tests and John's Risk for Diabetes

 Do you think John may be at risk to develop diabetes?

Diabetes Tests			
	Optimal	Borderline	High Risk
HbA1c		5.8	
Range	<5.7	5.7-6.4	20.4 %
HOMA-IR			70.4
Range	<2	2-3	>3
Glucose ²		122	
Range	70-99	100-125	<70 or >125 mg/dL
GSP		231	
Range	<200	200-250	>250 µmoi/
Adiponectin			6.1
Range	>10	7-10	<7 μg/dL
	Low	Optimal	riign
Insulin ³			232
Range	<5	5-15	>15 µU/mL

Boston Heart Prediabetes Assessment[™]

Clinical Significance

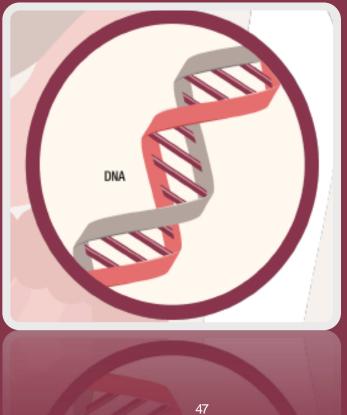
- Identifies patients at low, borderline and high risk of developing diabetes over 10 years
- Predicts the risk of developing diabetes in subjects with prediabetes with higher accuracy than other methods.

Bosto	n Hear	t Predia	betes Assessi	ment™	
Low	Borde	erline	High Risk		Interpretation: HIGH (55.3%) or (7.8) times normal risk of developing diabetes within 10
0%	10%	20%		100%	years. Recommend diet and exercise program, and consider metformin.

Schaefer EJ, et al. A new model for the prediction of diabetes: mellitus: results from the Framingham Offspring Study (manuscript in ubmission). Kolberg JA, et al. Diabetes Care. 2009; 32(7):1207-1212. Lyssenko V, et al. Diab Vasc Dis Res. 2012;9:59-67. Noble D, et al. BMJ. 2011;343:d7163.

Boston Heart Prediabetes Assessment

Clinical Significance


sostol	n Hear	t Predia	betes Assessi	ment	
Low	Borde	erline	High Risk		Interpretation: HIGH (55.3%) or (7.8) times normal risk of developing diabetes within 10
0%	10%	20%		100%	years. Recommend diet and exercise program, and consider metformin.

http://www.diabetes.org/living-with-diabetes/treatment-and-care/medication/

Part IV: Genetics Do your patients' genetic profiles help guide

individualized treatment plans?

© 2015 Boston Heart Diagnostics Corporation

Boston Heart Statin Induced Myopathy (SLCO1B1) Genotype Test

Clinical Significance

- 60% of patients who stopped taking a statin cite muscle pain as the primary reason for discontinuation¹
- True risk of statin induced myopathy is ~10%²
 Causes a significant amount of noncompliance
- Only about 1 out of 4 people carry either one or two copies of the SLCO1B1 variant

1. Wei MY et. al. J Clin Lipidol. 7(5):472-483.

2. Voora D, et. al. J Am Coll Cardiol. 2009;54:1609-1616.

Boston Heart Statin Induced Myopathy (SLCO1B1) Genotype Test

Clinical Significance and Treatment Considerations

SLCO1B1 Genotype	Clinical Significance	Treatment Considerations		
T/T (valine/valine)	Normal metabolizer	Standard dose of statins*		
T/C (valine/alanine)	Decreased metabolizer Less LDL-C lowering response increases risk of statin induced myopathy and are at an up to 4.5-fold increased risk of developing myopathy on statin therapy	Moderate to low doses of water soluble statins*.		
C/C (alanine/alanine)	Markedly decreased metabolizer Statins get less LDL-C lowering and are at an up to 17-fold increased risk of developing myopathy on statin therapy	Low doses of water soluble statins*		

*If indicated, are recommended

Link E, et al. N Engl J Med. 2008;359(8):789–99. Niemi M, Pasanen MK, Neuvonen PJ. Pharmacol Rev. 2011;63:157-181. The SEARCH Collaborative Group. N Eng J Med. 2008;359:789-799. Voora D, Shah SH, Spasojevic I, et al. J Am Coll Cardiol. 2009;54:1609-1616.

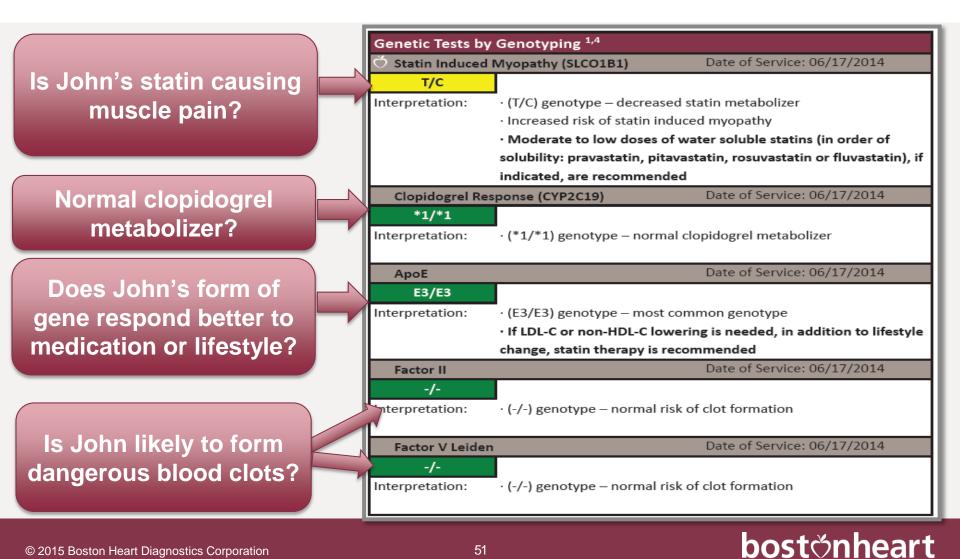
Genetic Tests

Definitions

Statin Induced Myopathy Gene – muscle aches and pains due to statins

Aids in treatment decisions related to dosage of clopidogrel (PLAVIX).

Apolipoprotein E Gene: Are lifestyle changes, medications and/or supplements better for you?


Blood clot protein genes

Genetic Tests by	Genotyping ^{1,4}
🔆 Statin Induced I	Myopathy (SLCO1B1) Date of Service: 07/28/2014
т/с	
Interpretation:	 (T/C) genotype – decreased statin metabolizer
	 Increased risk of statin induced myopathy
	\cdot Moderate to low doses of water soluble statins (in order of
	solubility: pravastatin, pitavastatin, rosuvastatin or fluvastatin), if
	indicated, are recommended
Clopidogrel Res	ponse (CYP2C19) Date of Service: 07/28/2014
*1/*1	
Interpretation:	· (*1/*1) genotype – normal clopidogrel metabolizer
АроЕ	Date of Service: 07/28/2014
E3/E3	
Interpretation:	· (E3/E3) genotype – most common genotype
	· If LDL-C or non-HDL-C lowering is needed, in addition to lifestyle
	change, statin therapy is recommended
Factor II	Date of Service: 07/28/2014
-/-	
Interpretation:	· (-/-) genotype – normal risk of clot formation
	D. I [0
Factor V Leiden	Date of Service: 07/28/2014
-/-	
Interpretation:	 (-/-) genotype – normal risk of clot formation

Genetic Tests

Treatment Options

diagnostics®

Testing Beyond Primary Drivers of Atherosclerosis: Fatty Acids

Impact of Fatty Acids to the Cell Membrane (Phospholipids)

The Good.

Double bonds in the good fatty acids improve the fluidity of the membrane allowing for better LDL receptor recycling The Bad.

Saturated and trans fats cause lack of membrane fluidity and lack of LDL receptor recycling The Balanced.

Enhances fluidity and function of the phospholipid membrane (each phospholipid has two fatty acids attached)

P Kuo, M Weinfeld, M A Rudd, et al. Plasma membrane enrichment with cis-unsaturated fatty acids enhances LDL metabolism in U937 monocytes. *Arterioscler Thromb Vasc Biol.* 1990;10:111-118

Boston Heart Fatty Acid Balance™

Definition

Measures the major key fatty acids for the purposes of CV risk assessment & disease management.

Ö Boston Heart Fatty Acid Balance™	Test ¹			
	Optimal	Borderline	High	
Saturated FA Index		30.7		Saturated FA Index is BORDERLINE. Consider restricting dietary intake of
Range	<30.0	30.0-32.0	>32.0 %	saturated fat by choosing poultry without skin, fish, low fat dairy products,
L				lean cuts of meat, and replacing butter with vegetable oils or trans fat free
Trans FA Index	0.45			soft margarine. Trans FA Index is OPTIMAL
Trans FA Index Range	<0.45	0.80-1.10	>1.10 %	Trans PA Index is OP TIMAL.
Nange				
	Optimal	Borderline	Low	
Monounsaturated FA Index		19.7		Monounsaturated FA Index is BORDERLINE. Consider increasing intake of
Range	>22.0	19.0-22.0	<19.0 %	almonds, avocado or vegetable oils such as canola or olive oil.
Unsaturated/Saturated Ratio Index		2.21		Unsaturated/Saturated Ratio Index is BORDERLINE. Consider increasing intake of vegetable fats (nuts, seeds, oils) and restricting intake of animal
Range	>2.25	2.00-2.25	<2.00	fats (fatty meat, cheese, ice cream, butter).
Omega-3 FA Index		2.19		Omega-3 FA Index is BORDERLINE. Eicosapentaenoic Acid (EPA) level is
Range	>4.50	1.85-4.50	<1.85 %	BORDERLINE. Docosahexaenoic Acid (DHA) level is BORDERLINE. Consider
EPA	-1150	14.8	1.05 / 0	increasing intake of oily fish such as salmon, sardines, herring, tuna, or
Range	>50.0	10.0-50.0	<10.0 µg/mL	mackerel, or take fish oil capsules daily. Increased EPA levels have been
DHA		67.9	1010	associated with lower risk of heart disease.
Range	>100.0	45.0-100.0	<45.0 µg/mL	
ALA		21.5		Alpha Linolenic Acid (ALA) level is BORDERLINE. Consider increasing intake
Range	>30.0	12.0-30.0	<12.0 µg/mL	of walnuts, chia seeds, flaxseeds, and canola or flaxseed oil.
	Low	Mid	High	
Omega-6 FA Index		45.9	-	Values are reported according to the lowest, middle and highest thirds of
Range	<41.0	41.0-46.0	>46.0 %	our reference population. Some authorities have recommended a goal
Linoleic Acid (LA)			1353.6	below the 10th percentile for the Omega-6/Omega-3 Ratio Index (a value of
Range	<825.0	025 0 4040 0	>1040.0	9.0) and the AA/EPA Ratio Index (a value of 5.0).
	<825.0	825.0-1040.0	μg/mL	
Arachidonic Acid (AA)		242.4		
Range	<220.0	220.0-290.0	>290.0 µg/mL	
AA/EPA Ratio Index		16.4		
Range	<13.0	13.0-25.0	>25.0	
Omega-6/Omega-3 Ratio Index		16.66		
Range	<15.0	15.0-24.0	>24.0	

Itakura H, et al. J Atheroscler Thromb. 2011;18(2):99-107. Mozaffarian D, et al. N Engl J Med. 2006;354:1601-13. Fernandez ML , West KL. J Nutr. 2005;135(9):2075-2078.

Clinical Significance of Fatty Acids

Fatty Acid	Clinical Significance
Saturated	Raise levels of LDL-C and increase heart disease risk
Trans	Markedly increase risk of heart disease by increasing LDL-C and decreasing HDL-C
Monounsaturated	Beneficial fat that lowers heart disease risk
Unsaturated - saturated ratio index	Increase polyunsaturated fatty acid intake lowers LDL-C and decreases heart disease risk
Omega-6	Plasma values >40% increase risk of heart disease
Omega-3	When given in specific doses can decrease TG levels in people with elevated plasma levels of TG. Decrease heart disease morbidity and mortality

Schaefer EJ. *Am J Clin Nutr* 2002;75:191-212. Lichtenstein AH et al. *N Engl J Med*.1999;340:1933-40. Mozaffarian D, et al. *N Engl J Med* 2006;354:1601-1613. Fernandez ML ,et al. J Nutr 2005;135:2075-2078. Lee JH et al. *Mayo Clinic Proc.* 2008;83:324-332 Estruch R et al.*N Engl J Med.* 2013;368:1279-90 Ooi E. et al. *Journal of Lipid Research.*2012;53:1958-67

Boston Heart Lifestyle Program

Boston Heart Lifestyle Program

Boston Heart offers a scientifically designed and personalized Lifestyle Program integrating test results, choice nutrition, exercise and support with Registered Dietitians

to help patients achieve long-term heart-health.

An Integrated Approach to Patient Wellness

all starts with the **scientifically designed Life Plan** which is created using a pr gorithm that combines test results, medical history and personal preferences to ersonalized nutrition plan.

atients then have access to the **support of Registered Dietitian coaches** who understand how to integrate the Life Plan into everyday life. They will help set of spire patients to follow through with healthier habits that can reduce the risk of h sease.

nally, patients have **access to easy-to-use, online resources**, such as a food kercise journal used to track progress, nutrition and exercise articles and 24/7 se ccess to test results, Diagnostic Reports and Life Plans

Based on Science Designed by Experts

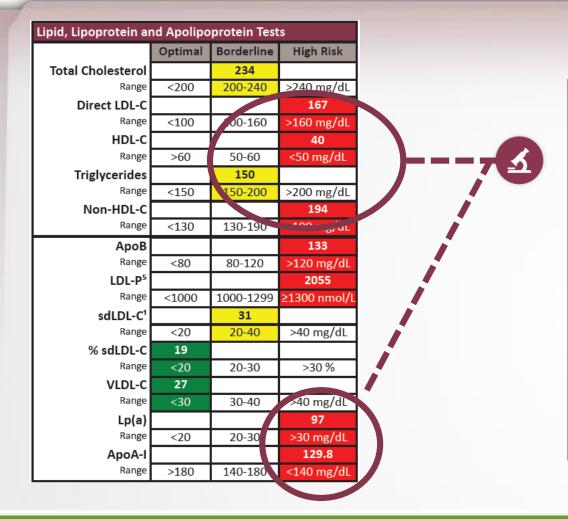
Ernst Schaefer, MD Co-founder and Medical Director of Boston Heart and a leader in developing new ways to address CVD risk

Michael Dansinger, MD Medical Director at Boston Heart, Director of the Diabetes Reversal Program at Tufts, and nutrition doctor for NBC's *The Biggest Loser*

Joi Gleason, RD Lead Dietitian at Boston Heart, research nutritionist at the Lipid Metabolism Lab at the Human Nutrition Research Center on Aging

The insights from this scientific research inform our nutritional guidance

Patient Overview Barbara: 50 Years Old with High LDL-C


- Height 5'3", weight 153 lbs, BMI 27.1 kg/m²
- Medical history: consistently high LDL-C
- Current medications: Niacin and Omega-3
- No family history of premature CVD and diabetes; non-smoker; does not want to take a statin; had lost 10 lbs prior to her first Boston Heart test

First Boston Heart Results April 2013

EXPANDED RISK ASSESSMENT

Boston Heart testing confirms Barbara's: •LDL-C is high •HDL-C is low •Triglycerides are borderline •ApoA-I is low •Lp(a) is high – a risk marker for CVD

Losing 10 lbs was not enough to improve her cholesterol levels.

Unwilling to take a statin so she started plant sterols, red yeast rice, niacin, CoQ-10 and

Abnormal HDL Map with Very Low α-1 HDL Particles

Ở Boston Heart HDL Map [™] Test ¹									
ApoA-I (mg/dL) evels in HDL particles		Borderline	High Risk	HDL Particles	Optimal Female HDL Map	Patient's HDL Map			
α-1			16.1						
in a second	>30	20-30	<20 mg/dL						
α-2	55.U								
Range	>45	34-45	<34 mg/dL	4					
α-3		24.8		٨		-			
Range	<13.5	13.5-30	>30 mg/dL		•				
α-4		16.9							
Range	Range <13.5 1		>25 mg/dL	Ť					
Preß-1	9.6			۲		۹.			
Range	<17	17-25	>25 mg/dL						

Interpretation: This HDL map is **ABNORMAL** and is associated with increased CVD risk. ApoA-I levels are reduced in the very large α -1 particle.

<u>Consideration</u>: Optimize LDL-C and triglycerides; keep HbA1c to < 7%; exercise regularly; restrict sugar; if indicated, lose weight and stop smoking, and consider niacin therapy.

Second Boston Heart Results July 2013

Barbara Green

Barbara was doing her own diet and exercise, but she only showed some improvement.

					_			_			
ipid, Lipoprotein ar				් Boston Heart	HDL Map	[™] Tests ¹					
	Optimal	Borderline	High Risk	ApoA-I (mg/dL)	Optimal	Borderline	High Risk	HDL	Optimal Female	Patient's	
Total Cholesterol	198			levels in HDL particles			Ű	Particles	HDL Map	HDL Map	
Range	<200	200-240	>240 mg/dL	α-1		24.1					
Direct LDL-C		136		Range	>30	20-30	<20 mg/dL	5			
Range	<100	100-160	>160 mg/dL	α-2		55.1		100			
HDL-C			43	Range	>65	55-65	<55 mg/dL	5			
Range	>60	50-60	<50 mg/dL	α-3	22.1			-			
Triglycerides	88			Range	<25	25-30	>30 mg/dL	۹			
Range	<150	150-200	>200 mg/dL	α-4	123	16.6	>30 mg/ut			-	
Non-HDL-C	14.0.0	155	100					ې			
Range	<130	130-190	>190 mg/dL	Range	<15	15-18	>18 mg/dL		-	-	
LDL-P ⁵			1528	Preß-1	7.9					•	
Range	<1000	1000-1299	≥1300 nmol/L	Range	<10	10-15	>15 mg/dL	-			
sdLDL-C ¹		21	10 (1)	Interpretation: This HDL map is in the BORDERLINE CVD risk category based on ApoA-I levels in the							
Range	<20	20-40	>40 mg/dL	very large α -1 particle.							
% sdLDL-C	15										
Range	<20	20-30	>30 %	Consideration: Optimize LDL-C and triglycerides; keep HbA1c to < 7%; exercise regularly; restrict							
VLDL-C	19		10 (1)	sugar; if indicated	, lose wei	ght and stop	smoking.				
Range	<30	30-40	>40 mg/dL	් Boston Heart	Cholosto	ol Palanco ^T	M Tosts ¹				
Lp(a)			88	Normalized Valu				torol			
Range	<20	20-30	>30 mg/dL	Normalized valu	ie (µiiioi x			lerline	High		
ApoA-I Range	>180	440.400	136.1	Production Ma	rkers	opt	iniai bore	crime			
Kange	>180	140-180	<140 mg/dL		thosterol	96					
nflammation Tests					mosteror	0	90	160	— l	BORDERLINE	
	Optimal	Borderline	High Risk	Dec	mosterol	46				DONDEREINE	
hs-CRP	0.4			Des	mosteror	40 0		90	120		
Range	<1.0	1.0-2.0	>2.0 mg/L	Absorption Ma	rkors						
LpPLA ₂	152				Sitosterol	455		T			
Range	<200	200-235	>235 ng/mL	Bela-3	sitosteroi	155 0	100	18	ີ ເ	шен	
Diabetes Tests						272				HIGH	
Japetes Tests	Outined	Developtions	High Disk	Can	npesterol	2/3 0	150	260			
	Optimal	Borderline	High Risk	Cholesterol Balar		Over	Absorber		Over Produc		
HbA1c	5.4						Absorber		Over Produc	er	
Range	<5.7	5.7-6.4	>6.4 %	Production/A	bsorption						
	Low	Optimal	High			0.2	0.5		1.1		
Insulin ³		5		Interpretation:							
Range	<5	5-15	>15 µU/mL		plesterol p	roduction ar	nd HIGH abso	ption ma	y be associated w	ith elevated LDL-C	
				levels and increas							
				 Desmosterol acc 	ounts for	a minor port	ion (20%) of (overall cho	lesterol producti	ion.	
				Consideration:							
				· Lifestyle modific	ation stat	in and an-ti-	niha thara	FUDL CI-	woring is indiate	- d	

Lifestyle Program August 2013

- Joined the Boston Heart Lifestyle Program
- Between August-November 2013:
 - Completed 2 coaching sessions
 - Used online food and exercise journal consistently

KISK	Risks You Test results High blood pi Smoking Physical inact Diabetes Obesity Waist circum	ivity	Uncontrollable Risk Factors Age Family history of premature- heart disease Previous heart disease or stroke				
Goals		Test	Your	Results	Target		
	LDL Cholesterol		1	36	Lower <100		
	Triglycerides		88		Maintain <150		
	HDL Cholesterol		43		Raise > 60		
	Boston Heart HDI	. Map™ -Alpha-1	24		Raise > 30		
	Small Dense LDL	Cholesterol	21		Maintain < 20		
	Insulin		5		Maintain 5-15		
	Hemoglobin A1c		5.4		Maintain < 5.7		
	High Sensitivity C	Reactive Protei	0.4		Lower <1		
	Boston Heart Cho Test	lesterol Balance	Over Absorber		Follow dietary guidance		
Dietary Target	Calorie Source	Target Percentage	Tar Gram			Goal	
	Carbohydrate 45% 1		13	35 Choos		e healthy carbs	
	Fat Saturated Unsaturated	30% 10% 20%	4	13 Limit ch		healthy fats nolesterol to 200mg/da rans fat	
	Protein	25%	5 Choose		healthy, lean protein		

bost onheart

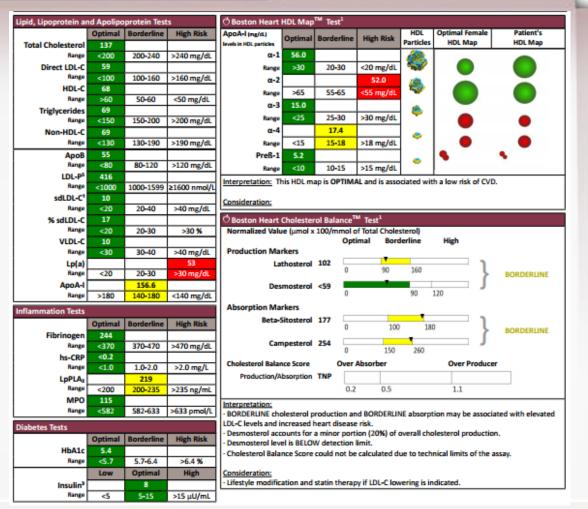
Post-Lifestyle Boston Heart Results November 2013 Barbara Green

Barbara's weight reduced from 153lbs to 131lbs since her first set of results in April.

After joining the Lifestyle Program, her HDL-C increased 20 points and her α -1 was in the optimal range with a low

risk of CVD.

Lipid, Lipoprotein a	^Ŏ Boston Heart HDL Map [™] Tests ¹									
	Optimal	Borderline	High Risk	ApoA-I (mg/dL)	Ontimal	Borderlin	e High Risk	HDL	Optimal Female	Patient's
Total Cholesterol	156			levels in HDL particles	Optimai	Doruenin	e High Kisk	Particles	HDL Map	HDL Map
Range	<200	200-240	>240 mg/dL	α-1	47.5					
Direct LDL-C	87			Range	>30	20-30	<20 mg/dL	- 50		
Range	<100	100-160	>160 mg/dL	α-2		57.1		100		
HDL-C	61			Range	>65	55-65	<55 mg/dL			
Range	>60	50-60	<50 mg/dL	α-3	19.6					
Triglycerides	65			Range	<25	25-30	>30 mg/dL	ې ا		
Range	<150	150-200	>200 mg/dL	α-4	13.4	23-30	>30 mg/uL	{		
Non-HDL-C Range	95	120 100	. 100 (-				10 (1)	ے		
-	<130	130-190	>190 mg/dL	Range	<15	15-18	>18 mg/dL	ł		
ApoB Range	69	00.120	+ 120 m = / -!!	Preß-1					-	•
LDL-P ⁵	<80 972	80-120	>120 mg/dL	Range	<10	10-15	>15 mg/dL			
LDL-P ^o Range	972 <1000	1000 1200	≥1300 nmol/L	Interpretation: This HDL map is OPTIMAL and is associated with a low risk of CVD.						
sdLDL-C ¹	14	1000-1299	21300 HIHOI/L							
Range	<20	20-40	>40 mg/dL	Consideration:						
% sdLDL-C	16	20 40	>40 mg/uz	් Boston Heart	Cholester	ol Balance	™ Tests ¹			
Range	<20	20-30	>30 %	→ Boston Heart Cholesterol Balance [™] Tests ¹ Normalized Value (μmol x 100/mmol of Total Cholesterol)						
VLDL-C	8			Optimal Borderline High						
Range	<30	30-40	>40 mg/dL	Production Markers						
Lp(a)			104	La	thosterol	71	•	4.50	ר 📃	
Range	<20	20-30	>30 mg/dL			0	90	160		OPTIMAL
ApoA-I		157.3		Des	mosterol	64			J	
Range	>180	140-180	<140 mg/dL			0		90	120	
nflammation Tests	Absorption Markers									
	Optimal	Borderline	High Risk	Beta-	Sitosterol	191	100	10	1	
hs-CRP	<0.2					0	100	18		HIGH
Range	<1.0	1.0-2.0	>2.0 mg/L	Can	npesterol	247	150	260	J	
LpPLA₂	171		<u> </u>			0		200		
Range	<200	200-235	>235 ng/mL	Cholesterol Balar		_	r Absorber		Over Produce	er
Diabetes Tests		·		Production/A	bsorption					
nabeles lesis	Optimal	Borderline	High Risk			0	.2 0.5		1.1	
116.64-	5.2	Borderinne	HIGH KISK	Interpretation:						
HbA1c Range	5.2 <5.7	5.7-6.4	>6.4 %		terol prod	uction and	HIGH absorpti	on may be	associated with e	elevated LDL-C lev
range	Low			and increased he	art disease	e risk.				
In	LOW 4	Optimal	High							
Insulin ³ Range	4 <5	5-15	>15 µU/mL	Consideration:						
Range	< <u>></u>	2-12	>15 µ0/mL	L Lifestyle modification and ezetimibe therapy if LDL-C lowering is indicated.						



Continued Improvement Post-Lifestyle April 2014 Barbara Green

Barbara continued to follow her lifestyle and supplement recommendations and her weight went down to 121 lbs.

Lp(a) decreased by half in latest

last month.


Barbara— Summary and Conclusion

- After the Lifestyle Program:
 - Weight of 153 lbs reduced to 121 lbs
 - Lab improvements:
 - + HDL-C increased from 40 to 68
 - + ApoA-I increased from 129.8 to 156.6
 - + α -1 HDL increased from 16.1 to 56
 - "This program really changed my life and my diet...I feel confident, healthy and 10 years younger."
- Continues to follow lifestyle & supplement recommendations

Thank you!

Q&A

